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ARTICLE INFO ABSTRACT

Keywords: Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner.
Caffeine Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic
Behavior proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar
glrlii;lrt‘i’evel"pmem rats started to receive water or caffeine (0.1 and 0.3 g/L in drinking water; low and moderate dose, respectively)

during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the
offspring received caffeine until the onset of puberty (30-34 days old). Behavioral tasks were performed to
evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition
memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were
verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after
caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3 g/L) only in females. While mod-
erate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed
in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in
the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects
of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female
rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF
levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral
outcomes and alterations in synaptic proteins during brain development in a sex dependent manner.

Sex differences

1. Introduction

Caffeine is a psychostimulant drug, which at doses regularly con-
sumed by population exerts its primary effects via non-selective an-
tagonism of adenosine A; and A, receptors (Einother and Giesbrecht,
2013; Fredholm et al., 1999). The reasons for high prevalence of caf-
feine consumption by adult population include its ability to promote
arousal, increase vigilance and improve attention and mental perfor-
mance (Chen et al., 2014; Fredholm et al., 1999; Knight et al., 2004;
Temple, 2009).

The consumption of caffeine before pregnancy has been estimated at
97% of women and approximately 68% will persist during this period
(Chen et al., 2014; Doepker et al., 2016; Frary et al., 2005; Knight et al.,

2004). Caffeine and its metabolites can easily cross placenta barrier and
cellular membranes, including from the fetal brain (Nehlig and Derbry,
1994; Parsons and Neims, 1981; Soellner et al., 2009; Yu et al., 2016).
Given that the hepatic enzyme systems CYP1A2 that metabolizes caf-
feine develop its expression and activity at postnatal periods, pregnant
women and their fetuses are naturally vulnerable to potential harmful
effects of caffeine (Leeder, 2001). Among the documented con-
sequences of exposure to high amounts of caffeine during prenatal are
spontaneous abortion, prematurity and low birth weight (Fernandes
et al., 1998; Hoyt et al., 2014; Weng et al., 2008).

Experimental studies have also revealed alterations in synaptic
proteins essential for brain maturation by chronic exposure of caffeine
during fetal and early postnatal brain development (Mioranzza et al.,
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2014; Sahir et al., 2000; Silva et al., 2013; for review see Porcitincula
et al.,, 2013; Temple, 2009). Of particular importance, caffeine con-
sumed during embryonic period altered brain-derived neurotrophic
factor (BDNF) and its precursor form (proBDNF) levels in both hippo-
campus and cortex (Mioranzza et al., 2014). As a neurotrophin syn-
thetized from proBDNF, BDNF can be either cleaved intracellularly and
secreted in a mature form (mBDNF), or secreted as proBDNF and then
cleaved extracellularly to mBDNF (reviewed in Lessmann et al., 2003).
The activation of p75 or TrkB receptors by proBDNF or mBDNF, re-
spectively, often results in opposite actions in terms of cell survival or
cell death (Teng et al., 2005; Pang et al., 2004; Woo et al., 2005). BDNF
signaling pathway also participates of the synaptogenesis and me-
chanisms underlying learning and memory in adult animals (Alsina
et al., 2001; Lu and Figurov, 1997).

The preventive effects of caffeine against age-related memory im-
pairment have been associated with changes in the BDNF and related
proteins in the hippocampus (Costa et al., 2008a,b; Sallaberry et al.,
2013). Recently, caffeine was able to induce long-term potentiation
(LTP) in an NMDA receptor-independent manner via increases in the
BDNF secretion in a calcium-dependent manner, which is necessary for
LTP maintenance through a TrkB receptor-mediated process (Lao-
Peregrin et al., 2016). Other preclinical and even clinical studies have
not reported long-term harmful effects of caffeine; thus it remains un-
clear how safe is caffeine consumption during pregnancy and brain
development (Bakker et al., 2010; Linn et al., 1982; Lynch et al., 2008;
Pollack et al., 2010; see recent comment Rutherford and Mayes, 2016;
Savitz et al., 2008; Yu et al., 2016).

Of note, the vast majority of studies had been conducted with ad-
ministrations to pregnant or lactating dams and the offspring undergoes
testing at adulthood. In fact, few studies have addressed the effects of
caffeine in the pubertal and/or adolescent period (Ardais et al., 2014;
O'Neill et al., 2016). Importantly, sex differences in the effects of caf-
feine are still poorly investigated and some studies have already re-
ported differences. For example, caffeine exposure at weaning wor-
sened recognition memory in adult female rats while it increased
locomotor activity in adult male rats (Ardais et al., 2016). While
memory impairment was observed in both sexes in the adulthood after
chronic prenatal caffeine exposure (Soellner et al., 2009), recognition
memory was not affected in adolescent rats from both sexes exposed to
caffeine, but males were less anxious than females in the light/dark test
(Turgeon et al., 2016). Recently, a double blind placebo-controlled
dose-response study showed that girls showed greater changes in sub-
jective responses compared with boys after pre- and post-pubertal caf-
feine exposure, but they also varied as a function of pubertal stage and
menstrual cycle phase (Temple et al., 2015).

As a part of normal brain development, synaptic density starts to
increase during early childhood, peaking around puberty and declines
across adolescence into adulthood (Glantz et al., 2007; Huttenlocher
and Dabholkar, 1997). Given that every stage of the brain development
relies on precisely orchestrated process, each period may suffer al-
terations from external agents that can dramatically change its
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structure and function, reverberating for a lifetime. The puberty is a
period of intense synaptic remodeling and of high vulnerability to
psychoactive substances. In the present study, we investigated the be-
havioral outcomes and synaptic proteins changes in pubescent rats from
both sexes that received caffeine since pregnancy. We hypothesized that
caffeine would affect the behavior and synaptic proteins crucial for
brain development in a sex selective manner.

2. Materials and methods
2.1. Animals

A total number of 187 divided into males and females were used
(35 days old), which also included female Wistar rats (70 days old)
mated within our colony at Federal University of Rio Grande do Sul.
Animals were maintained under 12 h light-dark-cycle (lights on at
7:00 AM), at constant temperature (22 + 1 °C) and with free access to
food, water or caffeinated solution. The pups of the litters were used for
this study and others. All experimental procedures were designed to
minimize the number of animals used and their suffering and were
approved by the Committee on Ethics of Animal Experiments of the
Federal University of Rio Grande do Sul (CEUA - UFRGS - Protocol
number 20332).

2.2. Caffeine treatment

Caffeine (0.1 or 0.3 g/L) was administered in the drinking water
only during the active cycle (lights off at 7:00 PM), with doses regimen
corresponding to low and moderate caffeine intake (0.1 or 0.3 g/L,
respectively), acting selectively on adenosine receptors (Ardais et al.,
2016; Fredholm et al., 1999). During the light cycle (lights on at
7:00 AM) tap water was available for all groups. Fifteen days before
mating, the females were organized into three groups: water (control
group), caffeine 0.1 g/L and 0.3 g/L (onset of treatment). At postnatal
day 21 (PND21), the offspring of each litter was weaned and separated
by sex, but continued to receive the same treatment from their re-
spective progenitors up to the end of puberty (34 days old). After this
separation (PND 21), the pups were kept at 3—4 rats per cage so that rats
of the same litter, sex and treatment could be housed together. The
timeline summarizes the schedule of administration and the subsequent
behavioral and synaptic proteins levels analysis (Fig. 1).

2.3. Behavioral analysis

Behavioral analysis started when rats were 30 days old, which
corresponds to the end of puberty and/or early adolescence (Quinn,
2005; Spear, 2000). All behavioral tests were conducted in a sound-
attenuated room under low-intensity light (121x) and recorded by
means of a computer-operated tracking system (Any-maze, Stoelting,
Woods Dale, IL). All procedures were carried out during the first period
of the light cycle (7:00 to 12:00 AM), in which plasma levels of caffeine

PND 0 PND 21 PND 30 PND 31-32 PND 33 PND 34
| 15 days | 21 days 1 21 days | | 24 hours | 48 hours | 24 hours I
Onset of treatment Mating Birth Weaning Open field Object Elevated plus Samples for
water or caffeine (separation by sex) recognition maze WB
(0.10r0.3 g/L) (end of
caffeine
/\@ b treatment)

Fig. 1. Schematic overview of the experimental design. Fifteen days before mating female rats were divided into three groups: water (control group), caffeine 0.1 g/L and 0.3 g/L (onset of
treatment). At postnatal day 21 (PND 21), the offspring from each litter was weaned, separated by sex and the same treatment from their respective dams was maintained up to the end of
puberty (34 days old). Caffeine was available only during the active cycle of the animals (lights off 7:00 P.M). All behavioral tests were carried out between 7:00 A.M. and 12:00 P.M.

WB—western blot.
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Fig. 2. Sex differences in the locomotor activity displayed by pubescent male and female
rats receiving water. Panels show the traveled distance in meters (m) in each area of the
open field apparatus during 10 min. (A) Total traveled distance); (B) traveled distance in
the center; (C) traveled distance in the periphery. Data are means * S.E.M (n = 20-25
animals per group). #P < 0.05; (Unpaired t-test).

are still detected (Ardais et al., 2016).

2.4. Open field

The locomotor activity was analyzed in the open field test, as pre-
viously reported (Ardais et al., 2016). The apparatus consisted of a
black-painted wooden box (50 X 50 cm) surrounded by 50 cm high
walls and divided into two areas: center and periphery. Central zone
was defined as a square area 20 cm from the wall. Each rat was placed
in the center of open field and the traveled distance in the areas was
recorded during a single session of 10 min. The experiments were
conducted in a sound- attenuated room under low-intensity light
(12 Ix); activity was recorded with a video camera positioned above the
arena and monitored in an adjacent room by an observer blind to the
treatment of the animals. Locomotion was measured as the total dis-
tance traveled in meters, which was recorded with a video camera and
analyzed by a computer-operated tracking system (Any-maze, Stoelting,
Woods Dale, IL).

2.5. Novel object recognition task

The object recognition test was carried out 24 h after an habituation
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Fig. 3. Sex differences in the locomotor activity displayed by pubescent male and female
rats treated with caffeine (0.1 and 0.3 g/L) or water. Panels show the traveled distance in
meters (m) in the open field apparatus during 10 min. (A) Total traveled distance (m); (B)
traveled distance in the center of the open field; (C) traveled distance in the periphery.
Data are means *+ S.E.M (n = 11-25 animals per group). *P < 0.05 — different from the
water group (One-way ANOVA, Tukey's post hoc test). #P < 0.05 (Unpaired t-test).
@p < 0.0001 (Two-way ANOVA, Tukey's post hoc test).

session to open field apparatus, as previously described (Ardais et al.,
2014). Rats first underwent a training session, in which two identical
objects were placed near the two corners at either end of one side of the
chamber. Rats were placed individually into the open field facing the
center of the opposite wall and allowed to explore the objects for 5 min.
The test session was performed 90 min and 24 h after training and two
dissimilar objects were presented, a familiar and a novel one (Ardais
et al., 2014; Bevins and Besheer, 2006). The exploration was defined by
directing the nose to the object at a distance of at least 2 cm and/or
touching the object with the nose or forepaws. The discrimination ratio
was defined as: TN/(TN + TF), [TN = time spent exploring the novel
object; TF = time spent exploring familiar object].

2.6. Elevated plus maze

The elevated plus maze, a pharmacologically validated apparatus
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Fig. 4. Performance of the object recognition task for pubescent male and female rats
treated with caffeine (0.1 and 0.3 g/L) or water. Panels show the discrimination ratio in
the training (brown/purple bars), test session 90 min later (light grey bars) or 24 h later
(dark grey bars). Data are means * S.E.M. of the discrimination ratio (n = 10-24 ani-
mals). *P < 0.05 - differences between training and test sessions (Paired t-test). (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

for the measurement of anxiety in rodents (Johnston and File, 1991;
Lister, 1987) was carried out as previously described (Ardais et al.,
2014). The elevated plus-maze apparatus consisted of two open arms
(30 cm X 5cm) and two enclosed arms (30 cm X 5cm X 10 ¢cm), ar-
ranged so that the two arms of each type are positioned oppositely,
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being separated by a central platform (5 cm X 5 cm). The height of the
maze was 70 cm, and the experiments were conducted under dim red
light in a quiet room. Each rat was placed in the center of the apparatus
facing an open arm. The number of entries and time spent in each
apparatus zone (closed, open and central area) were recorded during
one single session of 5 min. The entries were recorded when rats have
entered with their four paws in each arm.

2.7. Immunoblotting

24 h after the end of behavioral tests, rats were sacrificed under
anesthesia. The hippocampi and cerebral cortex were dissected out and
immediately homogenized in a 5% SDS solution containing a protease
and phosphatase inhibitor cocktail (Sigma, Sao Paulo/SP, Brazil), and
frozen at — 20 °C. After defrost, the protein content was determined
using the bicinchoninic acid assay (BCA, Pierce, Sao Paulo, Brazil). The
extracts were diluted at a final protein concentration of 2 pug/uL in
sample buffer and either 20 ug (cerebral cortex) or 50 pg (hippo-
campus) for GFAP and SNAP-25 and 80 pug of protein for proBDNF and
BDNF were applied along with pre-stained molecular weight standards
(Bio-Rad, Sao Paulo, Brazil) for SDS-PAGE analysis using 8 or 12%
running gel at a 4% concentrating gel. After electro-transfer, mem-
branes were blocked with Tris-buffered saline containing 0.1% Tween-
20 and 3% bovine serum albumin (BSA) for 1 h. The nitrocellulose
membranes (Amersham, Sao Paulo, Brazil) were then incubated over-
night at 4 °C with rabbit anti-GFAP antibody (1:2000; Sigma), rabbit
anti-SNAP-25 antibody (1:5000; Sigma), mouse anti-proBDNF (1:2000;
Abcam, Sao Paulo, Brazil) or mouse anti-BDNF (1:1000; Santa Cruz
Biotechnologies, Sao Paulo, Brazil). The membranes were washed and
incubated with horseradish peroxidase-conjugated secondary anti-
bodies for 1h at room temperature and developed with chemilumi-
nescence ECL kit (Amersham, Sao Paulo, Brazil). Densitometric ana-
lyses were performed using NIH ImageJ software. 3-Tubulin was used
as loading control and was quantified using a mouse anti-p-tubulin
antibody (1:4000; Santa Cruz Biotechnologies, Sao Paulo, Brazil), as
described above.
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Fig. 5. Anxiety-related behavior in the elevated plus maze displayed by pubescent male and female rats treated with caffeine (0.1 and 0.3 g/L) or water. (A and B) — number of entries and
time spent in the open and closed arms for pubescent male rats; (C and D) — number of entries and time spent in the open and closed arms for pubescent female rats. Data are represented

+

as means
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S.E.M. of the time spent in seconds (s) (n = 11-25 animals). *P < 0.05 - differences between water and caffeine groups (One-way ANOVA, Tukey's post hoc test).
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proteins. *P < 0.05 — different from the water group (One-way ANOVA, Tukey's post hoc test). P < 0.05; (Unpaired - t-test).

2.8. Statistical analysis

Data were analyzed by using Two-way or One-way ANOVA followed
by Tukey Multiple Comparison post hoc test when appropriated.
Unpaired t-test was used to compare differences between sexes. Paired
t-test was used to compare training and test sessions within groups in
the object recognition task. Data are expressed as means = SEM and
differences were considered for P < 0.05. Graph pad prism version 6.0
was the software used for statistical analysis and graphics.

3. Results
3.1. Open field analysis

Sex differences in the water group were found for total traveled
distance (t = 2.183; P < 0.05) and traveled distance in the central
zone (t = 2.511; P < 0.05) (Fig. 2). In male rats, both total traveled
distance [F (2,46) = 7.123; P < 0.01] and distance traveled in the
peripheral zone were increased by caffeine at 0.3 g/L [F (2,46)
= 8.949; P < 0.001] (Fig. 3). In female rats, both doses of caffeine
also caused a similar increase in the total traveled distance [F (2,53)
= 5.026; P < 0.01] and in the peripheral zone [F (2,53) = 4.722;
P < 0.05] (Fig. 3). Two-way ANOVA revealed effects of sex [F (1,99)
= 19.32; P < 0.0001]; treatment [F (2,99) = 6.003; P = 0.0035] and
interaction [F (2,99) = 4.914; P = 0.0092]) on total traveled distance.

3.2. Novel object recognition task

Recognition memory was assessed by the novel object recognition
task. The discrimination ratio between training and test session was
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similar in male rats that received water. Female rats receiving water
showed difference in the discrimination when long-term memory was
evaluated (t = 2.125; P < 0.05). In male rats, caffeine improved long-
term memory at low (0.1 g/L: t = 3.015; P < 0.05) and moderate
doses (0.3 g/L: t = 3.349; P < 0.01) (Fig. 4). No alteration was found
in the object recognition task performance for female rats that con-
sumed caffeine (0.1 g/L), while female rats receiving caffeine (0.3 g/L)
presented impairment in the long-term memory (Fig. 4).

3.3. Elevated plus maze

The effects of low (0.1 g/L) and moderate (0.3 g/L) doses of caffeine
on anxiety-related behavior were evaluated in the elevated plus maze.
No differences between sexes were found in all parameters analyzed
(Fig. 5). Caffeine was devoid of effects in male rats (Fig. 5). In female
rats, caffeine at 0.3 g/L increased in both the time spent [F (2,45)
= 3.341; P < 0.05] and the number of entries in the open arms [F
(2,45) = 5.343; P < 0.01]. Caffeine at 0.1 g/L decreased the number
of entries in the closed arms in female rats [F (2,44) = 4.496;
P < 0.05] (Fig. 5).

3.4. Immunodetection of proteins in the hippocampus and cerebral cortex

3.4.1. BDNF and proBDNF

Sex differences in the water groups were found for proBDNF levels,
with female rats presenting an increase in both hippocampus
(t =2.222; P < 0.05) and cerebral cortex (t = 2.643; P < 0.05)
(Figs. 6A and 7A). Males that received caffeine (0.3 g/L) presented in-
creased levels of proBDNF and BDNF in the hippocampus [F (2,14)
= 3.882; P < 0.05; F (2,14) = 4.621; P < 0.05, respectively], while
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Fig. 7. The immunocontent of proBDNF and BDNF in the cerebral cortex from pubescent male and female rats treated with caffeine (0.1 and 0.3 g/L) or water. (A and C) - sex differences
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Data are represented as means + S.E.M (n = 6-7 animals per group) of density unit lines (normalized by p-tubulin). At the top of each graphic are representative bands for all proteins.

*P < 0.05 — different from the water group (One-way ANOVA, Tukey's post hoc test).

no differences were found for both brain regions in female rats (Fig. 6B
and D). In addition, both tested doses of caffeine increased proBDNF
and BDNF in the cortex of male rats [F (2,16) = 8.919; P < 0.01; F
(2,15) = 10.59; P < 0.01, respectively] (Fig. 7B and D). In female
rats, only the lowest dose of caffeine increased proBDNF in the cerebral
cortex [F(2,16) = 6.917; P < 0.01], with no effect in the BDNF levels
(Fig. 7B and D).

3.4.2. GFAP and SNAP-25

The GFAP levels were not modified either by sex or caffeine treat-
ment (Fig. 8). In addition, SNAP-25 levels were similar in both sexes in
the hippocampus and cerebral cortex (Fig. 9A and C). Caffeine (0.3 g/L)
increased SNAP-25 levels in the cerebral cortex from female rats [F
(2,15) = 8.554; P < 0.01] (Fig. 9D).

4. Discussion

In this study, pubescent male and female rats exposed to caffeine
since prenatal period were evaluated on locomotor activity, recognition
memory and anxiety-like behavior. In parallel, a set of synaptic proteins
was assessed in the hippocampus and cerebral cortex.

4.1. Locomotor activity

Rodents at different ages tend to avoid central areas of a new en-
vironment and explore preferentially perimeters of a novel environ-
ment, a behavior called thigmotaxis (Bogdanov et al., 2013; Lamprea
et al., 2008; Treit and Fundytus, 1988). Based on this premise, the time
spent and traveled distance in the central zone are used as an indicative
of anxiety behavior, while the same parameters in the periphery are
interpreted as locomotor activity (Prut and Belzung, 2003). Thus,

pubescent females showed hyperlocomotion and attenuated anxiety in
the open field, which is in line with other reports at different ages
(Ardais et al., 2016; Brown and Nemes, 2008; Frye and Walf, 2002;
Hiroi and Neumaier, 2006; Hughes and Beveridge, 1990; Simpson and
Kelly, 2012).

Caffeine usually shows biphasic effects on locomotion in adult an-
imals, with lower doses promoting increases and higher doses de-
creasing the locomotor activity (El Yacoubi et al., 2000; Fisone et al.,
2004; Marin et al., 2011; Wise, 1988). The acute effects of low-mod-
erate doses of caffeine are via adenosine receptors antagonism
(Fredholm et al., 1999), preferentially to the blockade of A2A receptors
since caffeine did not trigger hyperlocomotion in A;aR knockout mice
(Ledent et al., 1997; El Yacoubi et al., 2000). Some studies have also
shown that chronic exposure to caffeine leads to tolerance to its sti-
mulatory actions (Svenningsson et al., 1999), specially for higher doses
(Holtzman and Finn, 1988; Lau and Falk, 1995). It can be noted that
hyperlocomotion in females was observed at both doses, while in males
only at moderate dose, suggesting that pubescent males may have de-
veloped tolerance to caffeine earliest than females. In fact, hyperloco-
motion after pre and postnatal exposure to caffeine was found only for
adult males (Ardais et al., 2016). Besides, caffeine exposure in early life
periods may have great impact on locomotion since adolescent male
rats exposed to its only in this period maintained similar distance in two
days exposure of open field apparatus, evidencing an atypical loco-
motor behavior (Ardais et al., 2014). Thus, pre and postnatal caffeine
exposure caused hyperlocomotion in the puberty in a sex and dose
dependent manner, but females seem to be less responsive to hyperlo-
comotion by caffeine over time (Ardais et al., 2016; Caravan et al.,
2016). Based on these findings, the effects of caffeine in the locomotor
activity change across ages for both sexes.



C. Sallaberry et al.

Progress in Neuropsychopharmacology & Biological Psychiatry 81 (2018) 416-425

HIPPOCAMPUS
M F w 0.1 0.3 w 0.1 0.3
== == GFAP (55kDa) - — —— == GFAP (55kDa)
A = G_tubulin (50 kDa) B - B-tubulin (50 kDa)
oo 57 150 -
2E o, = S water
: 2 a:_ : r::;es % g [ caffeine 0.1
€< 1.0F €2 1.0fF Il caffeine 0.3
_;5 o = »;E
28 g8
f - 0.50 f S osf
=g <5
= i " : 6 S
0.0 + + 0.0
water water MALES FEMALES
CEREBRAL CORTEX
M F w0.103 w 0.1 0.3
— —  GFAP(55kDa) o B — — — GFAP (55kDa)
C “ = - tubulin (50 kDa) D —— —— == ——  p-tubulin (50 kDa)
150
i 1.5r . 0= Bl water
£ 2 . . g Male £ ! [ caffeine 0.1
£3 = Females EZ2 4o} fieine 0.3
5% 1.0|-_:l:_ % 23 Il caffeine
g3 ’ i3
c g SN
$% osf f,—E, 05}
$£ g5
G E o £
0.0 + + 0.0
water water MALES FEMALES

Fig. 8. The immunocontent of GFAP in the hippocampus and cerebral cortex from juvenile male and female rats treated with caffeine (0.1 and 0.3 g/L). Sex differences in the GFAP levels
from hippocampus (A) and cortex (C) of water groups. GFAP levels from hippocampus (B) and cortex (D) of water and caffeine-treated groups. Data are represented as means + S.E.M
(n = 6-7 animals per group) of density unit lines (normalized by B-tubulin). At the top of each graphic are representative bands for all proteins.

4.2. Anxiety-related behavior

It is relatively established that female rodents are less anxious and
fearful than males (Archer, 1975; Brown and Nemes, 2008; see recent
comments in Shansky and Woolley, 2016), and this pattern of emo-
tionality may already be observed in earlier periods of brain develop-
ment. Pubescent females were less anxious than males in the open field,
but both sexes showed similar behavior in the elevated plus maze, as
previously noted (Estanislau and Morato, 2006). Pre and postnatal
moderate caffeine attenuated anxiety in the elevated plus maze only in
pubescent females, with no effect observed for both sexes in the open
field. Interestingly, only adult female rats exposed to low, moderate and
high caffeine since prenatal period were less anxious in the open field,
and at high dose both sexes showed attenuated anxiety in the elevated
plus maze (Ardais et al., 2016). In the same study, caffeine treatment
interrupted at weaning did not alter anxiety behavior in the adulthood
of both sexes in the elevated plus maze. Apart from differences in the
responsiveness to apparatuses, the classical anxiogenic effects of caf-
feine seem to be more evident in later periods of brain development
(Bhattacharya et al., 1997; Noschang et al., 2009; Pechlivanova et al.,
2012). For example, male rats receiving caffeine during throughout
adolescence period have already showed an exacerbation of anxiety at
low and moderate doses (Ardais et al., 2014; O'Neill et al., 2016).

4.3. Recognition memory

Another important sex difference was found for recognition
memory. We have already reported that adolescent male rats had poor
performance in the object recognition task (Ardais et al., 2014). In this
study, pubescent females presented a better performance in the object
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recognition task for long-term memory (LTM), and both sexes displayed
worsened recognition memory when short-term memory (STM) was
evaluated. Age differences have been described for the object recogni-
tion task, with younger rats presenting a decrement compared to adults
(Anderson et al., 2004; Reger et al., 2009), probably due to the rela-
tively slow maturation at this time of brain development of the neural
circuits involved in recognition memory (Bachevalier and Beauregard,
1993). Furthermore, it has been demonstrated that sex hormones exert
influence in distinct brain areas involved in learning and memory
(Duarte-Guterman et al., 2015; Hamson et al., 2016; Sanchez-Andrade
and Kendrick, 2011).

Of particular importance, caffeine differently affected memory ac-
cording to the sex. Pubescent males were most favored by improve-
ments in the recognition memory, similar to previous findings in ado-
lescent male rats (Ardais et al., 2014). Of note, caffeine differently
affected memory according to the sex. Pubescent males were most fa-
vored by improvements in the recognition memory, similar to previous
findings in adolescent male rats (Ardais et al., 2014). This could be
associated to increases in cortical and hippocampal BDNF and proBDNF
levels, once that caffeine was described to alter signaling of this neu-
rotrophin by inducing LTP and promoting its secretion, both events
implicated in learning and memory processes (Lao-Peregrin et al.,
2016).

Pubescent female rats presented a worsened recognition memory at
moderate dose. During early stages of development, a great number of
functional changes occur in the brain as a result of remodeling of the
synaptic circuits. Since cytochrome P450 activity is low in neonates,
exposure to caffeine exposure in this period could be altering these
processes. Likewise, memory impairment in females could be also re-
lated to increase in the SNAP-25 levels in the cortex, which
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Fig. 9. The immunocontent of SNAP-25 in the hippocampus and cerebral cortex from pubescent male and female rats treated with caffeine (0.1 and 0.3 g/L) or water. Sex differences in
the SNAP-25 levels from hippocampus (A) and cortex (C) of water groups. SNAP-25 levels from hippocampus (B) and cortex (D) of water and caffeine-treated groups. Data are represented
asmeans * S.E.M (n = 6-7 animals per group) of density unit lines (normalized by B-tubulin). At the top of each graphic are representative bands for all proteins. *P < 0.05 — different

from the water group (One-way ANOVA, Tukey's post hoc test).

corroborates with previous data from other studies reporting memory
impairment and increased SNAP-25 levels or overexepression (Cao
et al., 2013; McKee et al., 2010). Furthermore, caffeine could be pre-
cluding the neuronal loss and dendritic pruning which occur, in a
physiologic manner, in this female rats development period (Koss et al.,
2014; Willing and Juraska, 2015). Moreover, adult females exposed
since prenatal period have also showed impairment in the recognition
memory when caffeine treatment was interrupted at weaning (Ardais
et al., 2016). In the same study, recognition memory was not affected in
adult male and female rats exposed continuously to caffeine since
prenatal period (Ardais et al., 2016). It becomes increasingly clear that
beyond sex differences, there is a time window of brain development in
which caffeine affects permanently some types of memory. For ex-
ample, adult male and female rats exposed to caffeine either gestation
and/or lactation showed impaired memory in different tasks (Silva
et al., 2013; Soellner et al., 2009). Furthermore, sexual dimorphism in
the adult brain are originated from effects of the sexual hormones
during specific time windows of development, which include the late
embryonic period to the first postnatal weeks, revealing that the in-
fluence of sex hormones occurs even before birth (Colciago et al.,
2015).

4.4. Synaptic proteins levels

Caffeine has altered the levels of BDNF in association with beha-
vioral outcomes at different ages (Ardais et al., 2014; Costa et al.,
2008a, 2008b; Sallaberry et al., 2013). Thus, in order to find some
association between behavioral outcomes and sex differences by caf-
feine treatment, BDNF and related proteins were analyzed in the
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hippocampus and cerebral cortex. BDNF is synthesized as the pro-
neurotrophin proBDNF (Lu et al., 2005) and its signaling is essential for
recognition memory (Callaghan and Kelly, 2012; Greenberg et al.,
2009).

Regarding the sex differences, pubescent female rats presented in-
creased proBDNF, but not BDNF, suggesting that the proneurotrophin
was not necessarily converted into the mature form. These differences
between pro- and BDNF have been particularly evident in females
during brain development, in which higher levels of proBDNF gradually
decrease, while BDNF increases after puberty (Harte-Hargrove et al.,
2013; Yang et al., 2009). Importantly, estrogen may regulate BDNF
expression via an estrogen-sensitive response element in the BDNF gene
(Sohrabji et al., 1995).

Coincident with the increase in both proBDNF and BDNF in the
hippocampus, caffeine restored recognition long-term memory in pub-
escent male rats. It is plausible that both events are associated since
BDNF signaling is essential for recognition long-term memory
(Callaghan and Kelly, 2012, 2013; Greenberg et al., 2009), an asso-
ciation between both events might have occurred. Importantly,
proBDNF is not only an inactive precursor of BDNF, but a signaling
protein with specific functions.

The expression of GFAP abruptly increases until PND 6, then sta-
bilized but increased progressively until PND 48 in the hippocampus
(Kim, 2011). Caffeine during postnatal period promotes decreases in
the GFAP at different ages during development of the hippocampus and
neocortex (Desfrere et al., 2007), which also include decreases in these
brain areas from adolescent male rats treated only during this period
(Ardais et al., 2014). Differently from adult males, but not females, pre
and postnatal caffeine treatment did not modify GFAP in both brain
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areas (Ardais et al., 2016), suggesting that GFAP may not be involved in
these behavioral outcomes in the puberty.

The synaptosomal protein of 25 kDa (SNAP-25) is a crucial com-
ponent of the ternary soluble N-ethylmaleimide-sensitive factor at-
tachment protein receptor (SNARE) complex, the minimal machinery
required for vesicle exocytosis. There is substantial evidence that al-
terations in the SNAP-25 levels are associated with cognitive impair-
ment, hyperactivity and exacerbation of anxiety-related behaviors
(Braida et al., 2015; Hess et al., 1996; Kataoka et al., 2011). Since
moderate caffeine increased cortical SNAP-25 only in pubescent female
rats, this increase might be associated with worsened recognition
memory and less anxiety behavior, two behavioral outcomes found
exclusively in females. Although most studies collectively suggest that
reduced levels of SNAP-25 may contribute to the cognitive impaiment
and anxiety, memory impairment was observed in young adult rats
after overexepression of SNAP-25 by infusion of a recombinant adeno-
associated virus vector (McKee et al., 2010). While pubescent male rats
treated with caffeine showed normal SNAP-25 levels, adolescent male
rats showed exacerbated anxiety and decreased cortical SNAP-25 after
caffeine treatment (Ardais et al., 2014). Additionally, both sexes that
received caffeine since prenatal period showed attenuated anxiety in
the adulthood at high dose of caffeine, but only males had increased
levels of cortical SNAP-25 (Ardais et al., 2016).

4.5. Conclusions

Over the last years, there is a growing body of evidence pointing to
the impact of caffeine consumption at different phases of brain devel-
opment. While pubescent male rats were more benefited to the cogni-
tive improvements afforded by caffeine than females, the attenuated
anxious effects of caffeine were observed in females. In fact, females
seem to be more vulnerable in drugs responses than males (Anker and
Carroll, 2011; Becker and Hu, 2008). Our study tried to contribute for a
better knowledge about the effects of caffeine in the puberty, and also
to be in line with the rationale for incorporating Sex as a Biological
Variable (SABV) in current investigations (Shansky and Woolley, 2016).
The knowledge of the impact of this psychostimulant, according to the
sex in the immature brain is crucial to establish the safety dose.
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